Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons
نویسندگان
چکیده
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously.
منابع مشابه
Morphological and biochemical studies on the development of cholinergic properties in cultured sympathetic neurons. I. Correlative changes in choline acetyltransferase and synaptic vesicle cytochemistry
Under certain culture conditions, neonatal rat superior cervical ganglion neurons display not only a number of expected adrenergic characteristics but, paradoxically, also certain cholinergic functions such as the development of hexamethonium-sensitive synaptic contacts and accumulation of choline acetyltransferase (ChAc). The purpose of this study was to determine whether the entire population...
متن کاملMorphological and Biochemical Studies on the Development of Cholinergic Properties in Cultured Sympathetic Neurons
Superior cervical ganglion (SCG) neurons taken from perinatal rats and dissociated in culture develop cholinergic properties . This report examines this "plasticity" of neurotransmitter function with regard to its dependence on the stage of neuronal development. Explants of SCG from rats ranging in age from 2 d to adult were cultured, and the number of neurons surviving after 6 wk in culture wa...
متن کاملMorphological and biochemical studies on the development of cholinergic properties in cultured sympathetic neurons. II. Dependence on postnatal age
Superior cervical ganglion (SCG) neurons taken from perinatal rats and dissociated in culture develop cholinergic properties. This report examines this "plasticity" of neurotransmitter function with regard to its dependence on the stage of neuronal development. Explants of SCG from rats ranging in age from 2 d to adult were cultured, and the number of neurons surviving after 6 wk in culture was...
متن کاملPresence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue.
Brown adipose tissue (BAT) is richly provided with sympathetic noradrenergic nerves but is believed to lack a parasympathetic nerve supply. Acetylcholine is the predominant transmitter of postganglionic parasympathetic nerves. The vesicular acetylcholine transporter (VAChT) resides in synaptic vesicles of cholinergic nerve terminals and is used as a marker for peripheral cholinergic nerves. We ...
متن کاملVesicular acetylcholine transporter in the rat cochlear nucleus: an immunohistochemical study.
After being synthesized in the cytoplasm of axon terminals, acetylcholine is packaged into synaptic vesicles by a proton-dependent transporter, vesicular acetylcholine transporter (VAChT). Localization of VAChT is restricted to cholinergic neurons, especially their terminals. We used an anti-VAChT antibody from INCSTAR to localize cholinergic terminals in the rat cochlear nucleus (CN), an impor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 101 شماره
صفحات -
تاریخ انتشار 1985